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A point explosion in an arbitrary atmosphere 

By Y. M. TREVE AND 0. P. MANLEY 
Visidyne Inc., Woburn, Massachusetts 

(Received 6 January 1972) 

It is shown that the method developed by Laumbach & Probstein (1969) for 
an exponential atmosphere can be extended to the case of an arbitrary atmo- 
spheric density distribution. Results are given for various burst-point altitudes 
in a model atmosphere and compared with those corresponding to an exponential 
atmosphere. 

1. Introduction 
It is shown that the motion of the strong shock generated by an intense ex- 

plosion can be determined for an atmosphere of arbitrary density distribution 
by using a simple extension of the method developed by Laumbach and Probstein 
(1969) for an exponential atmosphere. The solution depends upon the altitude 
of the burst point but can still be scaled for an arbitrary explosion energy. Also, 
the shape of the shock front at a given instant of time can still be determined from 
integration of the differential equations of the model along the vertical. We give 
results corresponding to explosions occurring between I0 and 190km for (i) the 
U.S. Standard Atmosphere (U.S. Government Printing Office, Washington, 1962) 
and (ii) exponential atmospheres which approximate this standard atmosphere 
a t  the burst point. 

2. Equations of motion 
We recall the basic assumptions of the model presented in Laumbach & 

Probstein (1969): (a) the shock wave is sufficiently strong that counterpressure 
may be neglected and the strong shock relations can be applied; ( b )  the gas is 
considered to be a calorically and thermally perfect one characterized by an 
adiabatic exponent y ; (c) body forces due to the earth’s gravitational and magnetic 
fields, wind effects and heat transfer by radiation and conduction are neglected ; 
(d )  the atmosphere is thus considered to be initially at rest and cold, i.e. a t  zero 
temperature and pressure; ( 4 )  the entropy of a fluid particle remains constant 
after passage through the shock. T n  order to be able to solve at least approxi- 
mately the partial differential equations of this model it is further assumed that 
the flow field is ‘locally radial’. 

The geometry of the flow is as sketched in figure 1, where r is the Eulerian co- 
ordinate of a fluid particle of thickness dr, R(t,8) is the position of the shock 
front at  time t for a polar angle 8, and h(t, 0) = R(t, 8)  cos 8 is the corresponding 
altitude as measured from the burst point 0. The assumption of ‘local radiality ’ 
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then amounts to neglecting gradients in the B direction or, equivalently, to 
considering the streamlines from the burst point 0 as straight. Clearly, under the 
preceding assumptions the problem is axisymmetric about the vertical axis 
through the burst point. 

Upward direction 

a I 

FIGURE 1. Flow geometry. 

The method of solution used in Laumbach & Probstein (1969) amounts to 
deriving an ordinary differential equation for R from the integral energy con- 
servation equation 

E R 1  ar 2 _ -  4n - so y-l r2dr  +so 5 (at) Poridro7 

where E is the total hydrodynamic energy of the flow field and is considered to 
be known and constant, p = p(ro7 t ; 13) is the pressure at  time t ,  ro being defined 
as the position of a particular fluid particle at the burst time t = 0,  and, finally, 
po = po(ro cos 0) is the initial density distribution. 

In  (2.1) the pressure is evaluated from the momentum equation in integral 
form. namelv 

where from the strong shock assumption the pressure behind the shock front 
is given by 

2 
Ps = -Po@, (2.3) 

Y + l  

where the dot implies differentiation with respect to t. 
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By following the same steps as in Laumbach & Probstein (1969), but for an 
arbitrary density distribution p,(h), we obtain a differential equation in R and 
t from which there is easily derived an equation in h = R cos 8 and a new time 
scale 

namely 

where 

with 

The integration is conveniently performed once (2.5) and (2.9) have been cast 
into the equivalent system of three simultaneous differential equations 

dh1d.r = u, (2.1 0 a )  

du/dr = ( x  - G(h) u2)/P(h),  (2.10b) 

d$/d7 = po(h )  h2u. (2.10c) 

It remains to choose proper initial conditions for the determination of the 
solution of this system. 

For a uiiiform atmosphere of density pB = po(0),  equation (2.5) reduces to 

This equation has the first integral 

(2.12) 

4y2 -7+3  
where S =  9(Y-  1 )  (Y+ > 0, > o  ” = ( 2 7 -  1) ( y +  1) 2(4Y2-Y+3)PB 

and c is a constant of integration which remains to be determined (we are in- 
debted to one of the referees for the following proof that c must be set equal to  
zero). 

It is clear from the expression for t 2  in (2.12) above that, if c < 0, then for 
h + 0 ,  U becomes imaginary. Thus, we conclude that c 2 0. However, if c > 0, 
the internal energy (the first term on the right-hand side of (2.1)) approaches - co 
as h + 0, which is physically impossible since the internal energy must be non- 
negative. Thus, c = 0 and we have 

u2 = s / E 3 .  (2.13) 
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On integrating this expression we obtain 

Y .  ill. Treve and 0. P.  illanley 

where 

(2.14) 
- 
h = clr%, 

225(y- 1) ( y +  
c 1 =  [ (2.15) 

which in our notation is the equivalent of equation (27) of Lauinbach & Probstein 
(1969). 

3. Results 
In order to illustrate the method the set of differential equations (2.10) has 

been integrated numerically using the U.S. Standard Atmosphere (1962) as 
a model for altitudes between sea level and 190km. We have used the formula 
given in the U.S. Xtandard Atmosphere Supplements (U.S. Government Printing 
Office, Washington, 1966) to evaluate the corresponding density, namely 

p(Z) = 1.225/P4(2) kg/m3, (3.1) 

P ( 2 )  = A,+A,Z+ ... +AllZ1l, where 

with 
A ,  = + 0~1000000000 x lo1, 

A ,  = - 0.3433553057 x lo-', 

A ,  = - 0.3228358326 x lop4, 
A ,  = - 0.2291755793 x loF7, 
A ,  = - 0.2230070938 x lo-", 

A ,  = + 0.3393495800 x lo-', 

A ,  = + 0.5497466428 x 

A ,  = + 0*1106617734 x 

A ,  = + 0.2902146443 x 

A ,  = + 0.1010575266 x lo-,,, 
A,, = - 0.2482089627 x A,, = + 0.2548769715 x 

The relative error between the density given by this approximation and the 
density of the 1962 model is less than 5 %. 

The quantity d(lnp,)/dh appearing in the expression for G(h) (equation (2.8)) 
was evaluated using the formula 

d(lnp,)/dZ = - 4P'(Z) /P(Z) .  (3.2) 

A graph of po(Z) and of the density scale height A ( 2 )  = - dZ/d(lnp,) is given in 
figure 2 .  The values of A given by the above rational approximation are accurate 
to within about 5 yo except at very low altitudes ( 2 1 km). 

Finally, the initial values were computed using formula (2.14) for h, and 

u = +h/r, 

where c, is as defined by (2.15). The value of r used in these formulae was de- 
termined so that the relative difference between du/dr  as given by (2.10b) and 
its corresponding value du/dr = -&h/r2 for the uniform atmosphere was less 
than 1 yo. 
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FIGURE 2. Common logarithm of the density (in kg m-3) and density scale height (in km) 
profiles used for numerical computations (source : U.S. Standard Atmosphere Supplements, 
1966). Note that the peak in A a t  - 4 km is not physical and is probably due to ‘end-point ’ 
inaccuracies in the approximation used. 

The results of the computation are shown in figures 3 and 4 for y = 1.4 and 
explosions occurring at  altitudes 2, = 10, 20, 30, 40, 50, 100, 150 and 190km. 
Only the quantities 2 = 2, + h and h’ ( = dh/d.r) have been plotted versus 7 since 
the purpose of these calculations was essentially illustrative. We also show in 
these figures the results corresponding to an atmosphere whose density varies 
exponentially with altitude according to the formula p(h) = pB exp ( - h/A,), 
where AB is the value of A at the burst point as derived from the rational approxi- 
mation (3.2).  

Comparison of the respective sets of curves indicates that the oscillations in A 
in the altitude range 0-120 km have relatively little effect on the propagation of 
the shock starting from a burst point in this range. On the other hand, for burst 
altitudes in the range 120-190 km, there are considerable differences in the time 
evolution of the shock going downward owing to the large increase in the scale 
height A over that range. 
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I Z,, = I90 km 

FIGURE 3. Altitude of shock front versus time in (a) the upward direction (0 < 19 < in) 
and (6) the downward direction (+7r < 6' < T). ~ , US. Standard Atmosphere; - - -, 
exponential atmosphere. 
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FIGURE 4. Shock velocity versus time in (a) the upward direction (0  6 0 < in) and 
(b)  the downward direction (in < 0 < T). __ , U.S. Standard Atmosphere; - - - , ex- 
ponential atmosphere. 
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4. Conclusions 
It has been shown that Laumbach & Probstein’s approach to the problem of 

a point explosion in a cold exponential atmosphere can easily be extended to 
atmospheres whose density distribution vary in an arbitrary fashion. The time 
evolution of the shock position and velocity has been computed for burst alti- 
tudes in the 0-190km range both for the U.S. Standard Atmosphere and for 
exponential atmospheres which match this model at  the burst point. A com- 
parison of the results is presented, and from this it is possible to decide whether 
the exponential atmosphere description is adequate for a specific application. 
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